The Article was selected by the editors for Spotlight: as an article of Significant Interest. e00902-17

The paper from Jean lab selected by the Editorial Boards / EBioMedicine as one of the Issue Highlights.

Here they applied a technology developed in Dr. Hirst lab to track individual cells to study clonal evolution in human GBM.

Gene clusters found in bacterial species classified as Streptomyces encode the majority of known antibiotics as well as many pharmaceutically active compounds. A site-specific recombination system similar to those that mediate plasmid conjugation was engineered to catalyze tandem amplification of one of these gene clusters in a heterologous Streptomyces species. Three genetic elements were known to be required for DNA amplification in S. kanamyceticus: the oriT-like recombination sites RsA and RsB, and ZouA, a site-specific relaxase similar to TraA proteins that catalyze plasmid transfer. We inserted RsA and RsB sequences into the S. coelicolor genome flanking a cluster of 22 genes (act) responsible for biosynthesis of the polyketide antibiotic actinorhodin.