Kronstad Lab

< Back to Articles



Histone chaperoning ensures genomic integrity during routine processes such as DNA replication and transcription as well as DNA repair upon damage. Here, we identify a nuclear J domain protein, Dnj4, in the fungal pathogen Cryptococcus neoformans and demonstrate that it interacts with histones 3 and 4, suggesting a role as a histone chaperone. In support of this idea, a dnj4Δ deletion mutant had elevated levels of DNA damage and was hypersensitive to DNA-damaging agents. The transcriptional response to DNA damage was also impaired in the dnj4Δ mutant. Genes related to DNA damage and iron homeostasis were upregulated in the wild-type strain in response to hydroxyurea treatment; however, their upregulation was either absent from or reduced in the dnj4Δmutant. Accordingly, excess iron rescued the mutant’s growth in response to DNA-damaging agents. Iron homeostasis is crucial for virulence in C. neoformans; however, Dnj4 was found to be dispensable for disease in a mouse model of cryptococcosis. Finally, we confirmed a conserved role for Dnj4 as a histone chaperone by expressing it in Saccharomyces cerevisiae and showing that it disrupted endogenous histone chaperoning. Altogether, this study highlights the importance of a JDP cochaperone in maintaining genome integrity in C. neoformans.