Hancock Lab

< Back to Articles


Pseudomonas aeruginosa and Staphylococcus aureus are often comorbid human pathogens, isolated from expectorated sputum of cystic fibrosis patients and chronically infected wounds. Prior studies revealed a competitive advantage of P. aeruginosa over S. aureus in vitro that was slightly muted in vivo. Here, we demonstrated that the two-component regulatory system NtrBC influences the competitive advantage of P. aeruginosa over S. aureus in skin organoid and mouse models of co-infection. Expression of ntrBC was induced during co-culture of the two species and could be recapitulated in monoculture by the addition of the metabolite N-acetylglucosamine that is released from S. aureus following lysis. P. aeruginosa LESB58 WT, but not mutant (ΔntrC and ΔntrBC) strains, induced lysis of S. aureus USA300 LAC during planktonic growth and outcompeted S. aureus USA300 LAC during biofilm formation in vitro. We confirmed these findings in a murine abscess model of high-density infection. Accordingly, the secretory profile of P. aeruginosa LESB58 mutants revealed reduced production of anti-staphylococcal virulence factors including pyoverdine, pyocyanin and elastase. These phenotypes of LESB58 ΔntrBC could be at least partly complemented by overexpression of quorum sensing molecules including homoserine lactones or alkylquinolone signaling molecules. These data implicate the NtrBC two-component system in the complex regulatory cascade triggered by interspecies signaling that gives P. aeruginosa LESB58 a competitive edge over S. aureus USA300 LAC.