PSKR1 balances the plant growth–defence trade-off in the rhizosphere microbiome
Haney Lab
Haney Lab
Authors
Siyu Song, Zayda Morales Moreira, Annika L. Briggs, Xue-Cheng Zhang, Andrew C. Diener & Cara H. Haney

Publication: PSKR1 balances the plant growth–defence trade-off in the rhizosphere microbiome

 

Abstract: Microbiota benefit their hosts by improving nutrient uptake and pathogen protection. How host immunity restricts microbiota while avoiding autoimmunity is poorly understood. Here we show that the Arabidopsis phytosulfokine receptor 1 (pskr1) mutant displays autoimmunity (plant stunting, defence-gene expression and reduced rhizosphere bacterial growth) in response to growth-promoting Pseudomonas fluorescens. Microbiome profiling and microbiota colonization showed that PSKR1-mediated reduction in bacterial growth and stunting is largely specific to Pseudomonas. Transcriptional profiling demonstrated that PSKR1 regulates the growth–defence trade-off during Pseudomonas colonization: PSKR1 upregulates plant photosynthesis and root growth but suppresses salicylic-acid-mediated defences. Genetic epistasis experiments showed that pskr1 stunting and restriction of bacterial growth are salicylic acid dependent. Finally, we showed that Pseudomonas, but not other bacteria, induces PSKR1 expression in roots, suggesting that Pseudomonas might manipulate plant signalling to promote its colonization. Our data demonstrate a genetic mechanism to coordinate beneficial functions of the microbiome while preventing autoimmunity.